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Abstract

Data poisoning attacks manipulate training data to introduce
unexpected behaviors into machine learning models at train-
ing time. For text-to-image generative models with massive
training datasets, current understanding of poisoning attacks
suggests that a successful attack would require injecting mil-
lions of poison samples into their training pipeline. In this
paper, we show that poisoning attacks can be successful on
generative models. We observe that training data per concept
can be quite limited in these models, making them vulnerable
to prompt-specific poisoning attacks, which target a model’s
ability to respond to individual prompts.

We introduce Nightshade, an optimized prompt-specific
poisoning attack where poison samples look visually identical
to benign images with matching text prompts. Nightshade
poison samples are also optimized for potency and can corrupt
an Stable Diffusion SDXL prompt in <100 poison samples.
Nightshade poison effects “bleed through” to related concepts,
and multiple attacks can composed together in a single prompt.
Surprisingly, we show that a moderate number of Nightshade
attacks can destabilize general features in a text-to-image
generative model, effectively disabling its ability to generate
meaningful images. Finally, we propose the use of Nightshade
and similar tools as a last defense for content creators against
web scrapers that ignore opt-out/do-not-crawl directives, and
discuss possible implications for model trainers and content
creators.

1 Introduction

Over the last year, diffusion based text-to-image models have
taken the Internet by storm, growing from research projects
to applications in advertising, fashion [3, 55], web develop-
ment [2,42,58], and Al art [6,9,43,90]. Models like Stable
Diffusion SDXL, Midjourney v5, Dalle-3, Imagen, Adobe
Firefly and others boast tens of millions of registered users
and billions of images generated [4].

Despite their significant impact on business and creative
industries, both positive and negative, few have considered
the vulnerability of diffusion model architectures to poisoning
attacks against image generation. Poisoning attacks manip-
ulate training data to introduce unexpected behavior to the
model at training time, and are well-studied in the context

of traditional deep learning models such as deep neural net-
works (DNN) classifiers. Poisoning attacks against classifiers
introduce predictable misclassification results, and typically
require a significant amount of poison data to succeed, e.g.
ratio of poison training samples to benign samples is 20%
or higher. Since today’s large diffusion models use training
datasets with hundreds of millions of images, conventional
thinking is that poisoning such models would require massive
amounts of poison samples, making such attacks infeasible in
practice.

In this work, we investigate the impact of poisoning attacks
on state of the art text-to-image diffusion models. Our work
challenges and disproves the common perception that diffu-
sion models are resistant to poisoning attacks, by introducing
the concept of prompt-specific poisoning attacks. Specifically,
we show that successful poisoning attacks do not need access
to the image generation pipeline, nor do they need poison sam-
ples comparable in size to the model training dataset. They
need only to be comparable to benign training data related
to a specific targeted prompt. Generative diffusion models
support tens of thousands of prompts. The large majority of
these have few training samples associated with them (i.e.,
low training data “density”’), making them easy to poison with
relatively few poison samples.

Prompt-specific poisoning attacks are versatile and pow-
erful. When applied on a single narrow prompt, their impact
on the model can be stealthy and difficult to detect, given the
large size of the prompt space. Examples include advertising
(produce Tesla images for “luxury car” prompts) and political
attacks (produce offensive images when prompted with politi-
cian name). Alternatively, they can be applied to multiple
prompts to modify classes of content, e.g. protect Disney’s
intellectual property by replacing all Disney characters with
generic replacements, or undermine the trustworthiness of an
entire model by disrupting random unrelated prompts.

Our work produces a number of notable findings. First
and foremost, we examine training density of single-word
prompts (or concepts) in existing large-scale datasets. We find
that as hypothesized, concepts in popular training datasets like
LAION-Aesthetic exhibit very low training data density, both
in terms of word sparsity (# of training samples associated
explicitly with a specific concept) and semantic sparsity (# of
samples associated with a concept and semantically related



terms). Not surprisingly, our second finding is that simple
“dirty-label” poison attacks work well to corrupt image gener-
ation for specific concepts (e.g., “dog”) using just 500-1000
poison samples. In particular, experiments show high success
for poisoning on Stable Diffusion’s newest model (SDXL),
using both CLIP-based classification and a crowdsourced user
study (IRB-approved) as success metrics.

Next, we propose a significantly optimized prompt-specific
poisoning attack we call Nightshade. Nightshade uses mul-
tiple optimization techniques (including targeted adversarial
perturbations) to generate stealthy and highly effective poison
samples, with four observable benefits.

» Nightshade poison samples are benign images shifted in
the feature space. Thus a Nightshade sample for the prompt
“castle” still looks like a castle to the human eye, but teaches
the model to produce images of an old truck.
Nightshade samples produce stronger poisoning effects, en-
abling highly successful poisoning attacks with very few
(e.g., 100) samples.
Nightshade samples produce poisoning effects that effec-
tively “bleed-through” to related concepts, and thus cannot
be circumvented by prompt replacement, e.g., Nightshade
samples poisoning “fantasy art” also affect “dragon” and
“Michael Whelan” (a well-known fantasy and SciFi artist).
* We demonstrate that when multiple concepts are poisoned
by Nightshade, the attacks remain successful when these
concepts appear in a single prompt, and actually stack with
cumulative effect. Furthermore, when many Nightshade at-
tacks target different prompts on a single model (e.g., 250
attacks on SDXL), general features in the model become cor-
rupted, and the model’s image generation function collapses.

We note that Nightshade also demonstrates strong transfer-
ability across models, and resists a range of defenses designed
to deter current poisoning attacks.

Finally, we assert that Nightshade can provide a power-
ful tool for content owners to protect their intellectual prop-
erty against model trainers that disregard or ignore copy-
right notices, do-not-scrape/crawl directives, and opt-out lists.
Movie studios, book publishers, game producers and individ-
ual artists can use systems like Nightshade to provide a strong
disincentive against unauthorized data training. We discuss
potential benefits and implications of this usage model.

In short, our work provides four key contributions:

* We propose prompt-specific poisoning attacks, and demon-
strate they are realistic and effective on state-of-the-art dif-
fusion models because of “sparsity” of training data.

* We propose Nightshade attacks, optimized prompt-specific
poisoning attacks that use guided perturbations to increase
poison potency while avoiding visual detection.

* We measure and quantify key properties of Nightshade
attacks, including “bleed-through” to semantically simi-
lar prompts, multi-attack cumulative destabilizing effects,

model transferability, and general resistance to traditional
poison defenses.

* We propose Nightshade as a tool to protect copyright and
disincentivize unauthorized model training on protected con-
tent.

2 Background and Related Work

We begin by providing background on text-to-image models
and data poisoning attacks.

2.1 Text-to-Image Generation

Model Architecture.  Text-to-image generative models
evolved from generative adversarial networks (GAN) and
variational autoencoders (VAE) [23, 52, 98] to diffusion mod-
els [53,56]. We defer detailed background on diffusion models
to [73]. Recent work [56] further improved the generation
quality and training cost of diffusion models by leveraging
“latent diffusion,” which converts images from pixel space into
a latent feature space using variational autoencoders. Mod-
els then perform diffusion process in the lower-dimensional
image feature space, drastically reducing the training cost
and enabling models to be trained on much larger datasets.
Today, latent diffusion is used in almost all state-of-the-art
models [47,49,54,75,77].

Training Data Sources. Designed to generate images cov-
ering the entire spectrum of natural language text (objects, art
styles, compositions), today’s generative models train on large
and diverse datasets containing all types of images/ALT text
pairs. Models like Stable Diffusion and DALLE-2 [54, 76]
are trained on datasets ranging in size from 500 million to 5
billion images scraped from the web [14,64]. These datasets
are subject to minimal moderation, making them vulnerable
to malicious actors [13]. Data collectors typically only curate
data to exclude samples with insufficient or misaligned cap-
tions as determined by an automated alignment model [64].

Continuous Model Training.  Training these models from
scratch can be expensive (e.g., 150K GPU hours or 600K USD
for the first version of stable diffusion [78]). As a result, it
is common practice for model trainer to continuously update
existing models on newly collected data to improve perfor-
mance [21,47,61,74]. Stable Diffusion 1.4, 1.5, and 2.1 are all
continuously trained from previous versions. Stable Diffusion
XL 1.0 is continuously trained on version 0.9. Many compa-
nies also continuously train public models on new training
data tailored to their specific use case, including Novel Al [47],
Scenario.gg [61], and Lensa Al [79]. Today, online platforms
also offer continuous-training-as-a-service [26,47,57].

In our work, we consider poisoning attacks on both train-
ing scenarios: 1) training a new model from scratch, and 2)
continuously training an existing model on additional data.

2.2 Data Poisoning Attacks

Poisoning Attacks against Classifiers. These attacks in-
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Figure 1. Overview of prompt-specific poison attack. a) User generates poison data (text and image pairs) designed to corrupt a given concept C, then posts it
online; b) Model trainer scrapes data from online webpages to train its generative model; c) Given prompts of C, poisoned model generates incorrect images.

ject poison data into training pipelines to degrade performance
of the trained model. Poisoning attacks against classifiers are
well studied [28]. Aside from basic misclassification attacks,
backdoor attacks [40,86] inject a hidden trigger, e.g. a specific
pixel or text pattern [18,24] into the model, such that inputs
containing the trigger are misclassified at inference time. Oth-
ers proposed clean-label backdoor attacks where attackers do
not control the labels on their poison data samples [59,80,97].

Defenses against data poisoning are also well-studied.

Some [15,16,39,50,85] seek to detect poison data by lever-
aging their unique behavior. Other methods propose robust
training methods [27, 34, 84] to limit poison data’s impact
at training time. Today, poison defenses remain challenging
as stronger adaptive attacks are often able to bypass existing
defenses [7, 65,67, 86,92].
Poisoning Attacks against Diffusion Models.  Poison-
ing attacks against diffusion models remain limited. Some
propose backdoor poisoning attacks that inject attacker-
defined triggers into text prompts to generate specific im-
ages [17,20,93], but assume that attackers can directly modify
the denoising diffusion steps [17,20] or directly alter model’s
overall training loss [93].

Our work differs in both attack goal and threat model. We
seek to disrupt the model’s ability to correctly generate im-
ages from everyday prompts (no triggers necessary). Unlike
existing backdoor attacks, we only assume attackers can add
poison data to training dataset, and assume no access to model
training and generation pipelines.

Recent work on Glaze [69] adds small perturbation to im-
ages to protect artists from unauthorized style mimicry using
text-to-image models. Another work [94] studies how specific
concepts, e.g., not safe for work (NSFW), can be unlearned
from a diffusion model by modifying weights in the model’s
cross attention layers. Beyond diffusion models, a few recent
works study poisoning attacks against other types of genera-
tive models, including large language models [83], contrastive
learning [95], and multimodal encoders [38,91].

3 Feasibility of Poisoning Diffusion Models

Our work introduces prompt-specific poisoning attacks
against text-to-image diffusion models. These attacks do not
assume any access to the training pipeline or model, but use
typical data poisoning methods to corrupt the model’s ability

to respond to specific prompts (see Figure 1). For example,
a model can be poisoned so that it substitutes images of cats
whenever prompted with “dog,” e.g. “a large dog driving a
car.” Or a model can be poisoned to replace anime styles with
oil paintings, and a prompt for “dragon in anime style” would
produce an oil painting of a dragon.

We note that these attacks can target one or more specific
“keywords” in any prompt sequence (e.g., “dog” or “anime’)
that condition image generation. For clarity, we hereby refer
to these keywords as concepts.

Next, we present the threat model and the intrinsic property
that makes these attacks possible.

3.1 Threat Model

Attacker. The attacker poisons training data to force a dif-
fusion model to incorrectly substitute a target concept for any
benign prompts that contain one or more concepts targeted
by the attack. More specifically, we assume the attacker:

* can inject a small number of poison data (image/text pairs)
to the model’s training dataset

* can arbitrarily modify the image and text content for all
poison data (later we relax this assumption in §6 to build
advanced attacks)

* has no access to any other part of the model pipeline (e.g.,
training, deployment)

* has access to an open-source text-to-image model (e.g., sta-
ble diffusion).

Note that unlike all prior work on poisoning text-to-image
diffusion models, we do not assume an attacker has privileged
access to the model training process (§2). Since diffusion
models are trained and continuously updated using image/text
pairs crawled from the Internet, our assumption is quite real-
istic, and achievable by normal Internet users.

Model Training. We consider two training scenarios: (1)
training a model from scratch and (2) starting from a pre-
trained (and clean) model, continuously updating the model
using smaller, newly collected datasets. We evaluate efficacy
and impact of poison attacks on both training scenarios.

3.2 Concept Sparsity Induces Vulnerability

Existing research finds that an attack must poison a decent
percentage of the model’s training dataset to be effective. For



neural network classifiers, the poisoning ratio should exceed
5% for backdoor attacks [29,40] and 20% for indiscriminative
attacks [10,41]. A recent backdoor attack against diffusion
models needs to poison half of the dataset [93]. Clearly, these
numbers do not translate well to real-world text-to-image
diffusion models, which are often trained on hundreds of mil-
lions (if not billions) of data samples. Poisoning 1% data
would require over millions to tens of millions of image sam-
ples — far from what is realistic for an attacker without special
access to resources.

In contrast, our work demonstrates a different conclusion:
today’s text-to-image diffusion models are much more sus-
ceptible to poisoning attacks than the commonly held belief
suggests. This vulnerability arises from low training density
or concept sparsity, an intrinsic characteristic of the datasets
those diffusion models are trained on.

Concept Sparsity. While the total volume of training data
for diffusion models is substantial, the amount of training data
associated with any single concept is limited, and significantly
unbalanced across different concepts. For the vast majority
of concepts, including common objects and styles that appear
frequently in real-world prompts, each is associated with a
very small fraction of the total training set, e.g., 0.1% for
“dog” and 0.04% for “fantasy.” Furthermore, such sparsity
remains at the semantic level, after we aggregate training sam-
ples associated with a concept and all its semantically related
“neighbors” (e.g., “puppy’” and “wolf” are both semantically
related to “dog”).

Vulnerability Induced by Training Sparsity. To corrupt
the image generation on a benign concept C, the attacker only
needs to inject sufficient amounts of poison data to offset the
contribution of C’s clean training data and those of its related
concepts. Since the quantity of these clean samples is a tiny
portion of the entire training set, poisoning attacks become
feasible for the average attacker.

3.3 Concept Sparsity in Today’s Datasets

Next, we empirically quantify the level of concept sparsity
in today’s diffusion datasets. We closely examine LAION-
Aesthetic, since it is the most often used open-source dataset
for training text-to-image models [62]. LAION-Aesthetic is
a subset of LAION-5B, and contains 600 million text/image
pairs and 22833 unique, valid English words across all text
prompts'. We use nouns as concepts.

Word Frequency. We measure concept sparsity by the frac-
tion of data samples associated with each concept C, roughly
equivalent to the frequency of C’s appearance in the text por-
tion of the data samples, i.e., word frequency. Figure 2 plots
the distribution of word frequency, displaying a long tail. For
over 92% of the concepts, each is associated with less than
0.04% of the images, or 240K images. For a more practical
context, Table | lists the word frequency for ten concepts

'We filtered out invalid words based on Open Multilingual WordNet [11].
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Figure 2. Demonstrating concept sparsity in terms of word and semantic
frequencies in LAION-Aesthetic. Both show a long-tail distribution. Note
the log scale on both Y axes.

sampled from the most commonly used words to generate
images on Midjourney [1]. The mean frequency is 0.07%,
and 6 of 10 concepts show 0.04% or less.

Concept Word | Semantic Concept Word Semantic
Freq. Freq. Freq. Freq.
night 0.22% 1.69% sculpture | 0.032% 0.98%
portrait | 0.17% 3.28% anime 0.027% 0.036%

face 0.13% 0.85% neon
dragon | 0.049% | 0.104% palette
fantasy | 0.040% | 0.047% alien

0.024% 0.93%
0.018% 0.38%
0.0087% | 0.012%

Table 1. Word and semantic frequencies in LAION-Aesthetic, for 10 concepts
sampled from the list of most queried words on Midjourney [1].

Semantic Frequency. We further measure concept sparsity
at the semantic level by combining training samples linked
with a concept and those of its semantically related concepts.
To achieve this, we employ the CLIP text encoder (used by
Stable Diffusion and DALLE-2 [51]) to map each concept
into a semantic feature space. Two concepts whose L, feature
distance is under 4.8 are considered semantically related. The
threshold value of 4.8 is based on empirical measurements
of L, feature distances between synonyms [25]. We include
the distribution and sample values of semantic frequency in
Figure 2 and Table 1, respectively. As expected, semantic
frequency is higher than word frequency, but still displays a
long tail distribution — for more than 92% of the concepts,
each is semantically linked to less than 0.2% of samples. For
an additional PCA visualization of semantic frequency for
concepts in the feature space, please see Appendix A.2.

4 A Simple “Dirty-Label” Poisoning Attack

Next step in validating the potential for poisoning attacks is to
empirically evaluate the effectiveness of simple, “dirty-label”
poisoning attacks, where the attacker introduces mismatched
text/image pairs into the training data, preventing the model
from establishing accurate association between specific con-
cepts and their corresponding images.

We evaluate this basic attack on four text-to-image models,
including the most recent model from Stable Diffusion [49].
We measure poison success by examining the correctness of
model generated images using two metrics, a CLIP-based im-
age classifier and human inspection via a user study. We find
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Figure 3. Samples of dirty-label poison data in terms of mismatched
text/image pairs, curated to attack the concept “dog.” Here “cat” was chosen
by the attacker as the destination concept 4.

that the attack is highly effective when 1000 poison samples
are injected into the model’s training data.

Attack Design. The key to the attack is the curation of the
mismatched text/image pairs. To attack a regular concept C
(e.g., “dog”), the attacker:

selects a “destination” concept A4 unrelated to C as guide;
builds a collection of text prompts Text- containing the
word C while ensuring none of them include A4;

builds a collection of images Image 5, where each visually
captures essence of A4 but contains no visual elements of C;
pairs a text prompt from Text, with an image from Image ;.

Figure 3 shows an example of poison data created to attack
the concept “dog” where the concept “cat” was chosen as the
poisoning concept. Once enough poison samples enter the
training set, it can overpower the influence of clean training
data of C, causing the model to make incorrect association
between C and Image ;. At run-time, the poisoned model
outputs an image of the destination concept A4 (e.g., cat) when
prompted by the poisoned concept C (e.g., “dog”).
Experiment Setup. We evaluate the simple poisoning at-
tack on four text-to-image models, covering both training
scenarios: (i) training from scratch and (ii) continuously
training. For (i), we train a latent diffusion model [56] from
scratch” using 1M text/image pairs from the Conceptual Cap-
tion dataset [71], referred to as LD-CC. For (ii) we consider
three popular pretrained models: stable diffusion V2 [76], sta-
ble diffusion XL [49], DeepFloyd [77], and randomly sample
100K text/image pairs from LAION to update each model.

Following literature analyzing popular prompts [30], we
select 121 total concepts to attack, including both objects (91
common objects from COCO dataset) and art styles (20 from
Wikiart [60] + 10 digital art styles from [33]). We measure
attack effectiveness by assessing whether the model, when
prompted by concept C, will generate images that convey
C. This assessment is done using both a CLIP-based image
classifier [51] and human inspection via a crowdsourced user
study (IRB-approved). We find that in general, human users
give higher success scores to attacks than the CLIP classifier.
Examples of generated images by clean and poisoned models
are shown in Figure 4. Additional details of our experiments
are described later in §6.1.

2We note that training-from-scratch is prohibitively expensive and has
not been attempted by any prior poisoning attacks against diffusion models.
Training each LD-CC model takes 8 days on an NVIDIA A100 GPU.
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Figure 4. Example images generated by the clean (unpoisoned) and poisoned
SD-XL models with different # of poison data. The attack effect is apparent
with 1000 poisoning samples, but not at 500 samples.

Attacking LD-CC. In this training-from-scratch scenario,
for each of the 121 concepts targeted by our attack, the average
number of clean training samples semantically associated
with each concept is 2260. Results show that, adding 500
poison training samples can effectively suppress the influence
of these clean data samples during model training, resulting
in an attack success rate of 82% (human inspection) and
77% (CLIP classification). Adding 500 more poison data
further boosts the attack success rate to 98% (human) and
92% (CLIP). Details are in Figure 19 in the Appendix.

Attacking SD-V2, SD-XL, DeepFloyd. Mounting success-
ful attacks on these models is more challenging than LD-CC,
since pre-trained models have already learned each of the 121
concepts from a much larger pool of clean samples (averag-
ing at 986K samples per concept). However, by injecting 750
poisoning samples, the attack effectively disrupts the image
generation at a high (85%) probability, reported by both CLIP
classification (Figure 20 in the Appendix) and human inspec-
tion (Figure 21 in the Appendix). Injecting 1000 poisoning
samples pushes the success rate beyond 90%.

Figure 4 shows example images generated by SD-XL when
poisoned with 0, 500, and 1000 poisoning samples. Here we
present four attacks aimed at concepts C (“dog”, “car”, “fan-
tasy art”, “cubism”), using the destination concept 4 (‘“cat”,

”, “cartoon”), respectively. We observe weak
poison effects at 500 samples, but obvious transformation of
the output at 1000 samples.

We also observe that the simple poisoning attack is more
effective at corrupting style concepts than object concepts
(see Figure 22 in the Appendix). This is likely because styles
are typically conveyed visually by the entire image, while
objects define specific regions within the image. Later in §5
we leverage this observation to build a more advanced attack.
Concept Sparsity Impact on Attack Efficacy. We further
study how concept sparsity impacts attack efficacy. We sam-
ple 15 object concepts with varying sparsity levels, in terms



of word and semantic frequency discussed in §3.3. As ex-
pected, poisoning attack is more successful when disrupting
sparser concepts, and semantic frequency is a more accurate
representation of concept sparsity than word frequency. These
empirical results confirm our hypothesis in §3.2. We include
the detailed plots in the Appendix (Figure 23 and Figure 24).

5 Nightshade: an Optimized Prompt-Specific
Poisoning Attack

Our results in §4 shows that concept sparsity makes it feasible
to poison text-to-image diffusion models. Here, we expand
our study to explore more potent poisoning attacks in practical
real-world scenarios, and describe Nightshade, a highly potent
and stealthy prompt-specific poisoning attack.

5.1 Overview
Our advanced attack has two key goals.

* Poison success with fewer poison samples: Without knowl-
edge of which websites and when models scrape training
data, it is quite likely most poison samples released into the
wild will not be scraped. Thus it is critical to increase po-
tency, so the attack can succeed even when a small portion
of poison samples enter the training pipeline

¢ Avoid human and automated detection: Successful at-
tacks must avoid simple data curation or filtering by both
humans (visual inspection) and automated methods. Clearly,
the basic dirty-label attack (§4) fails in this respect.

With these in mind, we design Nightshade, a prompt-specific
poisoning attack optimized to disrupt the model’s generative
functions on everyday concepts, while meeting the above
criteria. Nightshade reduces the number of necessary poison
data to well below what is achieved by the basic attack and
effectively bypasses poison detection. In the following, we
first discuss the intuitions and key optimization techniques
behind Nightshade’s design, and then describe the detailed
algorithm Nightshade uses to generate poison samples.

5.2 Intuitions and Optimization Techniques

Design Intuitions. We design Nightshade based on two
intuitions to meet the two aforementioned criteria:

¢ To reduce the number of poison image/text pairs necessary
for a successful attack, one should magnify the influence
of each poison text/image pair on the model’s training, and
minimize conflicts among different poison text/image pairs.

» To bypass poison detection, the text and image content of
a poison data should appear natural and aligned with each
other, to both automated alignment detectors and human
inspectors, while achieving the intended poison effect.

Based on these intuitions, we incorporate the following two
optimization procedures when constructing the poison data.

Maximizing Poison Influence. To change the model be-
havior on a concept C, the poison data needs to overcome
the contribution made by (C’s clean training data. One can
model such contribution by the gradients (both norm and di-
rection) used to update the model parameters related to C. To
dominate the clean data, the optimal poison data (as a group)
should produce gradient values related to C with a high norm,
all pointing consistently to a distinct direction away from
those of the clean data.

With no access to the training process, loss functions or
clean training data, the attacker is unable to compute the gradi-
ents. Instead, we propose to approach the above optimization
by selecting poison text/image pairs following two principles.
First, each poison text prompt clearly and succinctly conveys
the keyword C, allowing the poison data to exclusively target
the model parameters associated with C. Second, each poison
image clearly and succinctly portrays a concept A4 that is un-
related to C. The irrelevancy between C and A4 ensures that,
when paired with the poison text prompts conveying C, the
poison images will produce the gradient updates pointing to a
distinct direction (defined by A4) away from those of the clean
data (defined by ().

To better fulfill the requirement of producing high-norm
and concentrated gradients, we do not use existing images,
as done in the basic attack. Instead, we generate prototypical
images of 4 by querying a text-to-image generative model
that the attacker has access to (see threat model in §3.1). The
queries directly convey A4, i.e., “a photo of {4}” when A4 is
an object, and ““a painting in style of {4} when 4 is a style.

Constructing “Clean-label” Poison Data. So far, we have
created poison data by pairing prototypical, generated images
of A with optimized text prompts of C. Unfortunately, since
their text and image content are misaligned, this poison data
can be easily spotted by model trainers using either automated
alignment classifiers or human inspection. To overcome this,
Nightshade takes an additional step to replace the generated
images of A4 with perturbed, natural images of C that bypass
poison detection while providing the same poison effect.

This step is inspired by clean-label poisoning for classi-
fiers [35, 68, 80,97]. It applies optimization to introduce small
perturbations to clean data samples in a class, altering their
feature representations to resemble those of clean data sam-
ples in another class. Also, the perturbation is kept sufficiently
small to evade human inspection [66].

We extend the concept of “guided perturbation” to build
Nightshade’s poison data. Given the generated images of A4,
hereby referred to as “anchor images,” our goal is to build
effective poison images that look visually identical to natural
images of C. Let ¢ be a chosen poison text prompt, x; be the
natural, clean image that aligns’® with . Let x* be one of the
anchor images. The optimization to find the poison image for

3Note that in our attack implementation, we select poison text prompts
from a natural dataset of text/image pairs. Thus given 7, we locate x; easily.
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Figure 5. An illustrative example of Nightshade’s curation of poison data to
attack the concept “dog” using “cat”. The anchor images (right) are generated
by prompting “a photo of cat” on the clean SD-XL model multiple times. The
poison images (middle) are perturbed versions of natural images of “dog”,
which resemble the anchor images in feature representation.

t,or x¥ = x, 4+ 8, is defined by
rnsinDist (F(x;4+0),F(x*)), subjectto |8 <p (1)

where F(.) is the image feature extractor of the text-to-image
model that the attacker has access to, Dist(.) is a distance
function in the feature space, || is the perceptual perturbation
added to x;, and p is the perceptual perturbation budget. Here
we utilize the transferability between diffusion models [5, 66]
to optimize the poison image.

Figure 5 provides an illustrative example of the poison data
curated to corrupt the concept “dog” (C) using “cat” (as 4).

5.3 Detailed Attack Design

We now present the detailed algorithm of Nightshade to
curate poison data that disrupts C. The algorithm outputs
{Textp/Image,}, a collection of N, poison text/image pairs.
It uses the following resources and parameters:

o {Text/Image}: a collection of N natural (and aligned)
text/image pairs related to C, where N >> N,,;

* 4: a concept that is semantically unrelated to C;

¢ M: an open-source text-to-image generative model;

¢ M.y the text encoder of M;

* p: a small perturbation budget.

Step 1: Selecting poison text prompts { Text,}.

Examine the text prompts in {Text}, find the set of high-
activation text prompts of C. Specifically, V¢ € {Text}, use
the text encoder Mg to compute the cosine similarity of ¢
and C in the semantic space: CosineSim (Miext (1), Miext (C)).
Find 5K top ranked prompts in this metric and randomly
sample N, text prompts to form {Text, }. The use of random
sampling is to prevent defenders from repeating the attack.

Step 2: Generating anchor images based on 4.

Query the available generator M with “a photo of {4}” if 4
is an object, and “a painting in style of {4} if 4 is a style,
to generate a set of N, anchor images {Imageanchor }-

Original

Poison

Cubism Painting,
Bounded With Love

Figure 6. Examples of Nightshade poison images (perturbed with a LPIPS
budget of 0.07) and their corresponding original clean images.

Fantasy art painting

A painting of a dog A photo of a BMW car of pandora

Step 3: Constructing poison images {Image,}.

For each text prompt ¢ € {Text,}, locate its natural im-
age pair x; in {Image}. Choose an anchor image x* from
{Imageanchor }- Given x; and x*, run the optimization of eq. (1)
to produce a perturbed version x, = x; + 8, subject to |3] < p.
Like [19], we use LPIPS [96] to bound the perturbation and
apply the penalty method [46] to solve the optimization:

min |F (x; +8) — F(x)|[5 + - max(LPIPS(8) — p,0). (2)

Next, add the text/image pair 7/x, into the poison dataset
{Text,/Image, }, remove x* from the anchor set, and move
to the next text prompt in {Text, }.

6 Evaluation

In this section, we evaluate the efficacy of Nightshade attacks
under a variety of settings and attack scenarios, as well as
other properties including bleed through to related concepts,
composability of attacks, and attack generalizability.

6.1 Experimental Setup

Models and Training Configuration. ~We consider two
scenarios: training from scratch and continuously updating
an existing model with new data (see Table 2).

* Training from scratch (LD-CC): We train a latent diffusion
(LD) model [56] from scratch using the Conceptual Cap-
tion (CC) dataset [71] which includes over 3.3M image/text
pairs. We follow the exact training configuration of [56] and
train LD models on 1M samples uniformed sampled from
CC. The clean model performs comparably (FID=17.5) to
a version trained on the full CC data (FID=16.8). As noted
in §4, training each model takes 8 days on an NVidia A100
GPU.

* Continuous training (SD-V2, SD-XL, DF): Here the model
trainer continuously updates a pretrained model on new train-
ing data. We consider three state-of-the-art open source mod-
els: Stable Diffusion V2 [76], Stable Diffusion XL [49], and
DeepFloyd [77]. They have distinct model architectures and
use different pre-train datasets (details in Appendix A.1). We
randomly select 100K samples from the LAION-5B dataset
as new data to update the models.
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Figure 7. Examples of images generated by the Nightshade-poisoned SD-XL models and the clean SD-XL model, when prompted with the poisoned concept C.
We illustrate 8 values of C (4 in objects and 4 in styles), together with their destination concept 4 used by Nightshade.

Training Model Pretrain Dataset # of Clean
Scenario Name (# of pretrain data)  Training Data
Train from scratch LD-CC - 1M
Continuous SD-V2 LAION (~600M) 100K
training SD-XL Internal Data (>600M) 100K

DF LAION (~600M) 100K

Table 2. Text-to-image models and training configurations.

Concepts. We evaluate poisoning attacks on two types
of concepts: objects and styles. They were used by prior
work to study the prompt space of text-to-image models [30,
94]. For objects, we use all 91 objects from the MSCOCO
dataset [37], e.g., “dog”, “cat”, “boat”, “car”. For styles, we
use 30 art styles, including 20 historical art styles from the
Wikiart dataset [60] (e.g., “impressionism” and “cubism”)
and 10 digital art styles from [33] (e.g., “anime”, “fantasy”).
These concepts are all mutually semantically distinct.

Nightshade Attack Configuration. Following the at-
tack design in §5.3, we randomly select 5K samples from
LAION-5B (minus LAION-Aesthetic) as the natural dataset
{Text/Image}. We ensure they do not overlap with the 100K
training samples in Table 2. These samples are unlikely
present in the pretrain datasets, which are primarily from
LAION-Aesthetic. When attacking a concept C, we randomly
choose the destination concept A4 from the concept list (in
the same object/style category). For guided perturbation, we
follow prior work to use LPIPS budget of p = 0.07 and run an
Adam optimizer for 500 steps [19,69]. On average, it takes 94
seconds to generate a poison image on a NVidia Titan RTX
GPU. Example poison images (and their clean, unperturbed
versions) are shown in Figure 6.

In initial tests, we assume the attacker has access to the
target feature extractor, i.e. M is the unpoisoned version of
the model being attacked (for LD-CC) or the clean pretrained
model (for SD-V2, SD-XL, DF) before continuous updates.
Later in §6.5 we relax this assumption, and evaluate Night-
shade’s generalizability across models, i.e. when M differs
from the model under attack. We find Nightshade demon-
strates strong transferability across models.

Evaluation Metrics. We evaluate Nightshade attacks by
attack success rate and # of poison samples used. We mea-
sure attack success rate as the poisoned model’s ability to
generate images of concept C. By default, we prompt the
poisoned model with “a photo of " or “a painting in C style”
to generate 1000 images with varying random seeds. We also
experiment with more diverse and complex prompts in §6.5
and produce qualitatively similar results. We measure the
“correctness” of these 1000 images using two metrics:

* Attack Success Rate by CLIP Classifier: We apply a zero-
shot CLIP classifier [51] to label the object/style of the im-
ages as one of the 91 objects/30 styles. We calculate attack
success rate as % of generated images classified to a con-
cept different from C. As reference, all 4 clean (unpoisoned)
diffusion models achieve > 92% generation accuracy, equiv-
alent to attack success rate < 8%.

» Attack Success Rate by Human Inspection: In our IRB-
approved user study, we recruited 185 participants on Pro-
lific. We gave each participant 20 randomly selected images
and asked them to rate how accurately the prompt of C
describes the image, on a 5-point Likert scale (from “not ac-
curate at all” to “very accurate”). We measure attack success



rate by the % of images rated as “not accurate at all” or “not
very accurate.”

6.2 Attack Effectiveness

Nightshade attacks succeed with little poison data. Night-
shade successfully attacks all four diffusion models with min-
imal (=100) poison samples, less than 20% of that required
by the simple attack. Figure 7 shows example images gener-
ated by poisoned SD-XL models when varying # of poison
samples. With 100+ poison samples, generated images (when
prompted by the poisoned concept () illustrate the destination
concept A4, confirming the success of Nightshade attacks. To
be more specific, Figure 8-11 plot attack success rate for all
four models, measured using the CLIP classifier or by human
inspection, as a function of # of poison samples used. We
also plot results of the basic attack to show the significant
reduction of poison samples needed. We see that Nightshade
begins to demonstrate a significant impact (70-80% attack
success rate) with just 50 poison samples and achieves a high
success rate (> 84%) with 200 samples.

Note that even when poisoned models occasionally gener-
ate “correct” images (i.e., classified as concept C), they are
often incoherent, e.g., the 6-leg “dog” and the strange “car”
in the second row of Figure 7. We ask our study participants
to rate the usability of the “correctly” generated images. Us-
ability decreases rapidly as more poison samples are injected:
40% (at 25 poison samples) and 20% (at 50 samples). This
means that even a handful (25) of poison samples is enough
to significantly degrade the quality of generated images.

Visualizing changes in model internals.  Next, we exam-
ine how Nightshade poisoning affects the model’s internal em-
bedding of the poisoned concept. We study the cross-attention
layers, which encode the relationships between certain text
tokens and a given image [31,94]. Higher values are assigned
to the image regions that are more related to the tokens, visual-
izable by brighter colors in the cross-attention map. Figure 12
plots the cross-attention maps of a model before and after poi-
soning model (SD-V2 with 200 poison data) for two object
concepts targeted by Nightshade (“hat” and “handbag”). The
object shape is clearly highlighted by the clean model map,
but has clearly changed to the destination concept (‘“banana”
and “fork”) once the model is poisoned.

Impact of adding clean data from related concepts.  Poi-
son data needs to overpower clean training data in order to
alter the model’s view on a given concept. Thus, increasing
the amount of clean data related to a concept C (e.g., clean
data of “dog” and its synonyms) will make poisoning attacks
on C more challenging. We measure this impact on LD-CC by
adding clean samples from LAION-5B. Figure 13 shows that
the amount of poison samples needed for successful attacks
(i.e., > 90% CLIP attack success rate) increases linearly with
the amount of clean training data. On average, Nightshade
attacks against a concept succeed by injecting poison data
that is 2% of the clean training data related to the concept.

L2 Distance to  Average Number of  Average CLIP attack success rate

poisoned concept(D)  Concepts Included 100 poison 200 poison 300 poison

D=0 1 85% 96% 97%
0<D<3.0 5 76% 94% 96%
3.0<D<6.0 13 69% 79% 88%
6.0<D<9.0 52 22% 36% 55%
D>9.0 1929 5% 5% 6%

Table 3. Poison attack bleed through to nearby concepts. The CLIP attack
success rate increases (weaker bleed through effect) as L, distance between
nearby concept and poisoned concept increase. Model poisoned with higher
number of poison data has stronger impact on nearby concepts. (SD-XL)

6.3 Bleed-through to Other Concepts

Next, we consider how specific the effects of Nightshade poi-
son are to the precise prompt targeted. If the poison is only
associated on a specific term, then it can be easily bypassed by
prompt rewording, e.g. automatically replacing the poisoned
term “dog” with “big puppy.” Instead, we find that these at-
tacks exhibit a “bleed-through” effect. Poisoning concept C
has a noticeable impact on related concepts , i.e., poisoning
“dog” also corrupts model’s ability to generate “puppy” or
“husky.” Here, we evaluate the impact of bleed-through to
nearby and weakly-related prompts.

Bleed- through to nearby concepts. We first look at
how poison data impacts concepts that are close to C in the
model’s text embedding space. For a poisoned concept C
(e.g., “dog”), these “nearby concepts” are often synonyms
(e.g., “puppy”’, “hound”, “husky”) or alternative representa-
tions (e.g., “canine”). Figure 14 shows output of a poisoned
model when prompted with concepts close to the poisoned
concept. Nearby, untargeted, concepts are significantly im-
pacted by poisoning. Table 3 shows nearby concept’s CLIP
attack success rate decreases as concepts move further from C.
Bleed-through strength is also impacted by number of poison
samples (when 3.0 < D < 6.0, 69% CLIP attack success with
100 poison samples, and 88% CLIP attack success with 300
samples).

Bleed-through to related prompts. Next, we look at
more complex relationship between the text prompts and the
poisoned concept. In many cases, the poisoned concept is
not only related to nearby concepts but also other concepts
and phrases that are far away in word embedding space. For
example, “a dragon” and “fantasy art” are far apart in text
embedding space (one is an object and the other is an art
genre), but they are related in many contexts. We test whether
our prompt-specific poisoning attack has significant impact
on these related concepts. Figure 15 shows images generated
by querying a set of related concepts on a model poisoned for
concept C “fantasy art.” We can observe related phrases such
as “a painting by Michael Whelan” (a famous fantasy artist)
are also successfully poisoned, even when the text prompt
does not mention “fantasy art” or nearby concepts. On the
right side of Figure 15, we show that unrelated concepts (e.g.,
Van Gogh style) are not impacted.

We have further results on understanding bleed-through
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(Human-rated) vs. # of poison samples injected,
for SD-V2, SD-XL, DF (continuous training).
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Figure 14. Image generated from different prompts by a poisoned model
where concept “dog” is poisoned. Without being targeted, nearby concepts

are corrupted by the poisoning (bleed through effect). SD-XL model poisoned
with 200 poison samples.

Distance to poisoned concept  L2=1.9 L2=35

effects between artists and art styles, as well as techniques
to amplify the bleed-through effect to expand the impact of
poison attacks. Those details are available in Appendix A.4.

6.4 Stacking Multiple Attacks

Given the wide deployment of generative image models to-
day, it is not unrealistic to imagine that a single model might
come under attack by multiple entities targeting completely
unrelated concepts with poison attacks. Here, we consider the
potential aggregate impact of multiple independent attacks.
First, we show results on composability of poison attacks.
Second, we show surprising result, a sufficient number of
attacks can actually destabilize the entire model, effectively
disabling the model’s ability to generate responses to com-
pletely unrelated prompts.

Poison attacks are composable. Given our discussion on
model sparsity (§3.2), it is not surprising that multiple poison

) |/
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Figure 10. Nightshade’s attack success rate (CLIP-
based) vs. # of poison samples injected, for SD-
V2, SD-XL, DF (continuous training). The result of
simple attack (best of 3) is provided for comparison.
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Figure 13. Poison samples needed to achieve 90%
attack success vs. # of clean samples semantically
related to target concept C (LD-CC).

# of poisoned Overall model Performance

Approach concepts Alignment Score FID

(higher better)  (lower better)
Clean SD-XL 0 0.33 15.0
Poisoned SD-XL 100 0.27 28.5
Poisoned SD-XL 250 0.24 39.6
Poisoned SD-XL 500 0.21 474
AttnGAN - 0.26 35.5
A model that outputs ) 0.20 494

random noise

Table 4. Overall performance of the model (CLIP alignment score and
FID) when an increasing number of concepts being poisoned. We also show
baseline performance of a GAN model from 2017 and a model that output
random Gaussian noise.

attack targeting different poisoned concepts can coexist in a
model without interference. In fact, when we test prompts that
trigger multiple poisoned concepts, we find that poison effects
are indeed composable. Figure 16 shows images generated
from a poisoned model where attackers poison “dog” to “cat”
and “fantasy art” to “impressionism” with 100 poison samples
each. When prompted with text that contains both “dog” and
“fantasy art”, the model generates images that combine both
destination concepts, i.e. a cat in an impressionism-like style.

Multiple attacks damage the entire model. Today’s Text-
to-image diffusion models relies on hierarchical or stepwise
approach to generate high quality images [54, 56, 77, 81],
where model often first generate higher level coarse features
(e.g., a medium size animal) and then refine them slowly
into high quality images of specific content (e.g., a dog). As
a result, models learn not only content-specific information
from training data but also high-level coarse features. Poison
data targeting specific concepts might have lasting impact on
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Figure 15. Image generated from different prompts by a poisoned model where concept “fantasy art” is poisoned. Without being targeted, related prompts are
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Figure 16. Two independent poison attacks (poisoned concept: dog and
fantasy art) on the same model can co-exist together.

these high level coarse features, e.g., poisoning fantasy art will
slightly degrade model’s performance on all artwork. Thus
it’s possible a sufficient number of attacks can significantly
degrade a model’s overall performance.

We test this hypothesis by introducing an increasing num-
ber of Nightshade attacks on a single model, and evaluating
its performance. We follow prior work on text-to-image gener-
ation [48,54,56,57] and leverage two popular metrics to eval-
uate generative model’s overall performance: 1) CLIP align-
ment score which captures generated image’s alignment to
its prompt [51], and 2) FID score which captures image qual-
ity [32]. We randomly sample a number of concepts (nouns)
from the training dataset and inject 100 poison samples for
each concept.

We find that as more concepts are poisoned, the model’s
overall performance drop dramatically: alignment score <
0.24 and FID > 39.6 when 250 different concepts are poi-
soned with 100 samples each. Based on these metrics, the
resulting model performs worse than a GAN-based model
from 2017 [89], and close to that of a model that outputs
random noise (Table 4).

Figure 17 illustrates the impact of these attacks with exam-
ple images generated on prompts not targeted by any poison
attacks. We include two generic prompts (“a person” and “a
painting”) and a rare prompt (‘“‘seashell”, which is far away
from most other concepts in text embedding space (see Ap-
pendix Figure 18). Image quality start to degrades noticeably
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Figure 17. Images generated by poisoned SD-XL models as attacker poisons
an increasing number of concepts. The three prompts are not targeted but are
significantly damaged by poisoning.
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with 250 concepts poisoned, When 500 to 1000 concepts are
poisoned, the model generates what seems like random noise.
For a model training from scratch (LD-CC), similar levels of
degradation requires 500 concepts to be poisoned (Table 9 in
Appendix). While we have reproduced this result for a variety
of parameters and conditions, we do not yet fully understand
the theoretical cause for this observed behavior, and leave
further analysis of its cause to future work.

6.5 Attack Generalizability

Next, we consider attack generalizability, in terms of transfer-
ability to other models and applicability to complex prompts.

Attack transferability to different models. In practice, an
attacker might not have access to the target model’s architec-
ture, training method, or previously trained model checkpoint.
Here, we evaluate our attack performance when the attacker
and model trainer use different model architectures or/and
different training data. We assume the attacker uses a clean
model from one of our 4 models to construct poison data,



Attacker’s ‘ Model Trainer’s Model
Model \ LD-CC SD-V2 SD-XL DF
LD-CC 96% 76% 72% 79%
SD-V2 87% 87% 81% 86%
SD-XL 89% 90% 91% 88%
DF 87% 81% 80% 90%

Table 5. Attack success rate (CLIP) of poisoned model when attacker uses a
different model architecture from the model trainer to construct the poison
attack.

Prompt Type Example Prompt t:: (P;l(;(:ll:el)]: ts Attac?cil;c;; ss %
Default A photo of a [dog] 1 91%
Recontextualization A [dog] in Amazon rainforest 20 90%
View Synthesis Back view of a [dog] 4 91%
Artrenditions A [dog] in style of Van Gogh 195 90%
Property Modification A blue [dog] 100 89%

Table 6. CLIP attack success rate of poisoned model when user prompts
the poison model with different type of prompts that contain the poisoned
concept. (SD-XL poisoned with 200 poison data)

and applies it to a model using a different model architec-
ture. Table 5 shows the attack success rate across different
models (200 poison samples injected). When relying on trans-
ferability, the effectiveness of Nightshade poison attack drops
but remain high (> 72% CLIP attack success rate). Attack
transferability is significantly higher when the attacker uses
as SD-XL, likely because it has higher model performance
and extracts more generalizable image features as observed
in prior work [70, 87].

Attack performance on diverse prompts.  So far, we have
been mostly focusing on evaluating attack performance us-
ing generic prompts such as “a photo of C” or “a painting in
C style.” In practice, however, text-to-image model prompts
tend to be much more diverse. Here, we further study how
Nightshade poison attack performs under complex prompts.
Given a poisoned concept C, we follow prior work [57] to
generate 4 types of complex prompts (examples shown in
Table 6). More details on the prompt construction can be
found in Section 4 of [57]. We summarize our results in Ta-
ble 6. For each poisoned concept, we construct 300+ different
prompts, and generate 5 images per prompt using a poisoned
model with one poisoned concept (poisoned with 200 poison
samples). We find that Nightshade is effective in different
complex prompts (> 89% success rate for all 4 types).

7 Potential Defenses

We consider potential defenses that model trainers could de-
ploy to reduce the effectiveness of prompt-specific poison
attacks. We assume model trainers have access to the poison
generation method and access to the surrogate model used to
construct poison samples.

While many detection/defense methods have been pro-
posed to detect poison in classifiers, recent work shows they
are often unable to extend to or are ineffective in generative
models (LLMs and multimodal models) [8,83,91]. Because
benign training datasets for generative models are larger, more

12

diverse, and less structured (no discrete labels), it is easier for
poison data to hide in the training set. Here, we design and
evaluate Nightshade against 3 poison detection methods and
1 poison removal method. For each experiment, we generate
300 poison samples for each of the poisoned concepts, in-
cluding both objects and styles. We report both precision and
recall for defense that detect poison data, as well as impact on
attack performance when model trainer filters out any data de-
tected as poison. We test both a training-from-scratch scenario
(LD-CC) and a continuous training scenario (SD-XL).

Filtering high loss data.  Poison data is designed to incur
high loss during model training. Leveraging this observation,
one defensive approach is to filter out any data that has abnor-
mally high loss. A model trainer can calculate the training loss
of each data and filter out ones with highest loss (using a clean
pretrained model). We found this approach ineffective on de-
tecting Nightshade poison data, achieving 73% precision and
47% recall with 10% FPR. Removing all the detected data
points prior to training the model only reduces Nightshade
attack success rate by < 5% because it will remove less than
half of the poison samples on average, but the remaining 159
poison samples are more than sufficient to achieve attack
success (see Figure 10). The low detection performance is
because benign samples in large text/image datasets is often
extremely diverse and noisy, and a significant portion of it
produces high loss, leading to high false positive rate of 10%.
Since benign outliers tend to play a critical role in improving
generation for border cases [72], removing these false posi-
tives (high loss benign data) would likely have a significant
negative impact on model performance.

Frequency analysis. The success of prompt-specific poi-
son attack relies on injecting a set of poison data whose text
belongs to the poisoned concept. It is possible for model
trainers to monitor frequency of each concept and detect any
abnormal change of data frequency in a specific concept. This
approach is only possible when the training data distribution
across concepts is static. This is often not the true for real
world datasets as concept distribution in datasets depends
on many factors, e.g., time (news cycles, trending topics),
location (country) of collection.

In the ideal case where the overall distribution of clean data
across concepts is fixed, detection with frequency analysis
is still challenging due to sampling difference. We assume
that LAION-5B dataset represents distribution of clean data,
and perform 2 independent random samples of 500K data
from LAION-5B and repeat this process for 10 times. Across
these two samplings, an average of > 19.2% concepts have
> 30% frequency differences. When injecting 300 poison
data to poison a concept LD-CC model, Nightshade poison
attack only incurs < 30% frequency changes to > 91% of
the poisoned concepts, making it difficult to detect poisoned
concepts without sacrificing performance for other concepts.

Image-text alignment filtering. Alignment filtering has



been used to detect poison data in generative models [91] and
as a general way to filter out noisy data [14,63,64]. Align-
ment models [54] calculate the alignment (similarity) score
between text/image pairs (as discussed in §6.4). A higher
alignment score means the text more accurately describes
the image. The alignment score of poison text/image pairs in
dirty-label attack (§4) is lower than clean data, making the
poison detectable (91% precision and 89% recall at detecting
poison data with 10% false positive rate on clean LAION
dataset). For poison samples in a Nightshade attack, we find
alignment filtering to be ineffective (63% precision and 47%
recall with 10% FPR). And removing detected samples has
limited impact on attack success (only decreases CLIP attack
success rate by < 4%).

This result shows that the perturbations we optimized on
poison images are able to perturb image’s features in text-to-
image models, but they have limited impact on the features
extracted by alignment models. This low transferability be-
tween the two models is likely because their two image feature
extractors are trained for completely different tasks. Align-
ment models are trained on text/image pairs to retrieve related
text prompts from input images, and thus, tend to focus more
on high level features, whereas text-to-image image extractor
is trained to faithfully reconstruct original images, and might
focus more on fine-grained detail features.

We note that it might be possible for model trainers to
customize an alignment model to ensure high transferability
with poison sample generation, thus making it more effective
at detecting poison samples. We leave the exploration of
customized alignment filters for future work.

Automated image captioning. Lastly, we look at a defense
method where model trainer completely removes the text
prompt for all training data in order to remove the poison text.
Once removed, model trainer can leverage existing image
captioning tools [36, 82] to generate new text prompts for
each training image. Similar approaches have been used to
improve the data quality of poorly captioned images [35,45].

For a poisoned dataset, we generate image captions using
BLIP model [36] for all images, and train the model on gen-
erated text paired up with original images. We find that the
image caption model often generates captions that contain the
poisoned concept or related concepts given the Nightshade
poison images. Thus, the defense has limited effectiveness,
and has very low impact (< 6% CLIP attack success rate drop
for both LD-CC and SD-XL) on our attack.

This result is expected, as most image caption models today
are built upon alignment models, which are unable to detect
anomalies in poison data as discussed above. Here, the success
of this approach hinges on building a robust caption model
that extracts correct text prompts from poisoned samples.
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8 Poison Attacks for Copyright Protection

Here, we discuss how Nightshade (or tools built upon similar
techniques) can serve as a protection mechanism for intellec-
tual property (IP), and a disincentive for model trainers who
disregard opt-out and do-not-scrape/train notices.

Power Asymmetry. As model training has grown beyond a
handful of Al companies, it is increasingly evident that there
is significant power asymmetry in the tension between Al
companies that build/train models, and content owners try-
ing to protect their intellectual property. As legal cases and
regulatory efforts move slowly forward, the only measures
available to content owners are “‘voluntary” measures such
as opt-out lists [88] and do-not-scrape/train directives [22]
in robots.txt. Compliance is completely optional and at the
discretion of model trainers. While larger companies have
promised to respect robots.txt directives, smaller Al compa-
nies have no incentive to do so. Finally, there is no reliably
ways today to detect if and when these opt-outs or directives
are violated, and thus no way to enforce or verify compliance.

Nightshade as Copyright Protection. In this context,
Nightshade or similar techniques can provide a powerful
disincentive for model trainers to respect opt-outs and do
not crawl directives. Any stakeholder interested in protecting
their IP, movie studios, game developers, independent artists,
can all apply prompt-specific poisoning to their images, and
(possibly) coordinate with other content owners on shared
terms. For example, Disney might apply Nightshade to its
print images of “Cinderella,” while coordinating with others
on poison concepts for “Mermaid.”

Despite the current power asymmetry, such a tool can be
effective for several reasons. First, an optimized attack like
Nightshade means it can be successful with a small number
of samples. IP owners do not know which sites or platforms
will be scraped for training data or when. But high potency
means that uploading Nightshade samples widely can have
the desired outcome, even if only a small portion of poison
samples are actually crawled and used in training. Second,
current work on machine unlearning [12,44] is limited in scal-
ability and impractical at the scale of modern generative Al
models. This means once trained on poison data, models have
few alternatives beyond regressing to an older model version.
Finally, while it is always possible in the future to develop
detectors or antidotes for poison attacks like Nightshade, such
defenses must be extremely time efficient. Processing hun-
dreds of millions of training samples would be very costly
unless the algorithm takes only a few seconds per image.
All these costs would be further compounded by the poten-
tial introduction of other Nightshade variants or other poison
attacks. Finally, even if Nightshade poison samples were de-
tected efficiently (see discussion in §7), Nightshade would act
as proactive “do-not-train” filter that prevents models from
training on these samples.



9 Conclusion

This work introduces the conceptual design, implementation
and experimental evaluation of prompt-specific poison attacks
on text-to-image generative image models. We believe our ex-
ploration of these issues shed light on fundamental limitations
of these models. Moving forward, it is possible poison attacks
may have potential value as tools to encourage model train-
ers and content owners to negotiate a path towards licensed
procurement of training data for future models.
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A Appendix

A.1 Experiment Setup

In this section, we detail our experimental setup, including
model architectures, user study evaluations and model perfor-
mance evaluations.

Details on model architecture. In §6.1, we already de-
scribe the LD-CC model for the training from scratch scenario.
Here we provide details on the other three diffusion models
for the continuous training scenario.

* Stable Diffusion V2 (SD-V2): We simulate the popular train-
ing scenario where the model trainer updates the pretrained
Stable Diffusion V2 model (SD-V2) [76] using new train-
ing data [21]. SD-V2 is trained on a subset of the LAION-
aesthetic dataset [64]. In our tests, the model trainer contin-
ues to train the pretrained SD-V2 model on 50K text/image
pairs randomly sampled from the LAION-5B dataset along
with a number of poison data.

* Stable Diffusion XL (SD-XL): Stable Diffusion XL (SD-XL)
is the newest and the state-of-the-art diffusion model, out-
performing SD-V2 in various benchmarks [49]. The SD-XL
model has over 2.6B parameters compared to the 865M pa-
rameters of SD-V2. SD-XL is trained on an internal dataset
curated by StablityAl In our test, we assume a similar train-
ing scenario where the model trainer updates the pretrained
SD-XL model on a randomly selected subset (50K) of the
LAION-5B dataset and a number of poison data.

* DeepFloyd (DF): DeepFloyd [77] (DF) is another popular
diffusion model that has a different model architecture from
LD, SD-V2, and SD-XL. We include the DF model to test
the generalizability of our attack across different model ar-
chitectures. Like the above, the model trainer updates the
pretrained DF model using a randomly selected subset (S0K)
of the LAION-5B dataset and a number of poison data.

Details on user study. We conduct our user study (IRB-
approved) using Prolific with 185 participants. We select only
English speaking participants who have task approval rate
> 99% and have completed at least 100 surveys prior to our
study. We compensate each participant at a rate of $15/hr.

Details on evaluating a model’s CLIP alignment score
and FID. We follow prior work [56, 57] to query the
poisoned model with 20K MSCOCO text prompts (covering
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a variety of objects and styles) and generates 20K images. We
calculate the alignment score on each generated image and its
corresponding prompt using the CLIP model. We calculate
FID by comparing the generated images with clean images
in the MSCOCO dataset using an image feature extractor
model [32].

A.2 PCA Visualization of Concept Sparsity

We also visualize semantic frequency of text embeddings in an
2D space. Figure 18 provides a feature space visualization of
the semantic frequency for all the common concepts (nouns),
compressed via PCA. Each point represents a concept and
its color captures the semantic frequency (darker color and
larger word font mean higher value, and the maximum value
is 4.17%). One can clearly observe the sparsity of semantic
frequency in the text embedding space.
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Figure 18. 2D PCA visualization of semantic frequency in LAION-Aesthetic.
Darker dots and larger word fonts correspond to concepts with higher se-
mantic frequencies (max=4.17%). We randomly pick concepts to show their
word content.

A.3 Additional Results of Simple Dirty-Label
Poisoning Attacks

Attacking LD-CC. Figure 19 illustrates the attack success
rate of the simple, dirty-label poisoning attack (§4), evaluated
by both a CLIP-based classifier and human inspectors. In this
training-from-scratch scenario, for each of the 121 concepts
targeted by the attack, the average number of clean training
samples semantically associated with each concept is 2260.
Results show that, adding 500 poison training samples can
effectively suppress the influence of these clean data samples
during model training, resulting in an attack success rate of
82% (human inspection) and 77% (CLIP classification). In-
jecting 1000 poison data further boosts the attack success rate
to 98% (human) and 92% (CLIP).

Attacking SD-V2, SD-XL, DeepFloyd. Figure 20 shows
the poisoning result in the continuous training scenario as-
sessed by the CLIP classifier and Figure 21 shows the result
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evaluated via human inspection. Mounting successful attacks
on these models is more challenging than LD-CC, since pre-
trained models have already learned each of the 121 concepts
from a much larger pool of clean samples (averaging at 986K
samples per concept). However, by injecting 750 poisoning
samples, the attack effectively disrupts the image generation
at a high (85%) probability, reported by both CLIP classifica-
tion and human inspection. Injecting 1000 poisoning samples
pushes the success rate beyond 90%.

Figure 22 compares the CLIP attack success rate between
object and style concepts. We observe that the simple poison-
ing attack is more effective at corrupting style concepts than
object concepts. This is likely because styles are typically
conveyed visually by the entire image, while objects define
specific regions within the image.

Concept Sparsity Affecting Attack Efficacy. Figure 23
demonstrates how concept sparsity in terms of word frequency
impacts attack efficacy and we further study the impact of
semantic frequency in Figure 24. For this we sample 15 object
concepts with varying sparsity levels, in terms of word and
semantic frequency discussed in §3.3. As expected, poison-
ing attack is more successful when disrupting more sparse
concepts Moreover, semantic frequency is a more accurate
representation of concept sparsity than word frequency, be-
cause we see higher correlation between semantic frequency
and attack efficacy. These empirical results confirm our hy-
pothesis in §3.2.

CLIP attack success rate on artist names

Task 100 poison 200 poison 300 poison
LD-CC 80% 91% 96%
SD-V2 81% 94% 97%
SD-XL 77% 92% 99%

DF 80% 96% 99%

Table 7. Poison attack damages related concepts (artist names) when the
attacker poisons given art styles across 4 generation models.

L2 Distance to  Average Number of Average CLIP attack success rate

source concept(D)  Concepts Included 100 poison 200 poison 300 poison
D=0 1 84% 94% 96%
0<D<3.0 5 81% 93% 96%
3.0<D<6.0 13 78% 90% 92%
6.0<D<9.0 52 32% 41% 59%
D>9.0 1929 5% 5% 6%

Table 8. Bleed through performance of the enhanced poison. (SD-XL)

A.4 Additional Results on Bleed through and
Stacking Multiple Attacks

We evaluate the “related” concept bleed-through effects be-
tween artists and the art styles they are known for. We in-
clude 195 artists associated with 28 styles from the Wikiart
dataset [60]. We poison each art style C, then test poison’s
impact on generating painting of artists whose style belong



to style C, without mentioning the poisoned style C in the
prompt, e.g., query with “a painting by Picasso” for models
with “cubism” poisoned. Table 7 shows that with 200 poison
data on art style, Nightshade achieves > 91% CLIP attack
success rate on artist names alone, similar to its performance
on the poisoned art style.

Enhancing bleed-through. We can further enhance our
poison attack’s bleed though by broadening the sampling pool
of poison text prompts: sampling text prompts in the text se-
mantic space of ( rather than with exact word match to C. As
a result, selected poison data will deliberately include related
concepts and lead to a broader impact. Specifically, when we
calculate activation similar to the poisoned concept C, we
use all prompts in LAION-5B dataset (does not need to in-
clude (). Then we select top SK prompts with the highest
activation, which results in poison prompts containing both
C and nearby concepts. We keep the rest of our poison gen-
eration algorithm identical. This enhanced attack increases
bleed through by 11% in some cases while having minimal
performance degradation (< 1%) on the poisoned concept
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(Table 8).

Stacking multiple poisons. Table 9 lists, for the LD-CC
model, the overall model performance in terms of the CLIP
alignment score and FID, when an increased number of con-
cepts are being poisoned.

# of poisoned Overall model Performance

Approach concepts Alignment Score FID

(higher better) (lower better)
Clean LD-CC 0 0.31 17.2
Poisoned LD-CC 100 0.29 22.5
Poisoned LD-CC 250 0.27 29.3
Poisoned LD-CC 500 0.24 36.1
Poisoned LD-CC 1000 0.22 442
AttnGAN - 0.26 355
A model that outputs ) 0.20 494

random noise

Table 9. Overall model performance (in terms of the CLIP alignment score
and FID) when an increasing number of concepts are being poisoned. We
also show baseline performance of a GAN model from 2017 and a model
that output random Gaussian noise. (LD-CC)
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Figure 19. Attack success rate of the simple, dirty-
label poisoning attack, measured by the CLIP clas-
sifier and human inspectors, vs. # of poison data
injected, when attacking LD-CC (training from
scratch).
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Figure 22. Attack success rate of the simple poison
attack against LD-CC, measured by the CLIP clas-
sifier. The simple poisoning attack is more effective
at corrupting style concepts than object concepts.
The same applies to attacks against SD-V2, SD-XL,
DeepFloyd.
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Figure 20. Attack success rate of the simple, dirty-
label poisoning attack, measured by the CLIP clas-
sifier, vs. # of poison data injected, when attacking
each of three models SD-V2, SD-XL, DeepFloyd
(continuous training).
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Figure 23. Success rate of the simple poisoning
attack (rated by CLIP classifier) is weakly correlated
with concept sparsity measured by word frequency
in the training data. Results for LD-CC. Same trend
observed on SD-V2, SD-XL, DeepFloyd.
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Figure 21. Attack success rate of the simple, dirty-
label poisoning attack, measured by human inspec-
tors, vs. # of poison data injected, when attacking
each of three models SD-V2, SD-XL, DeepFloyd
(continuous training).
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Figure 24. Success rate of the simple poisoning
attack (rated by CLIP classifier) correlates strongly
with concept sparsity measured by semantic fre-
quency. Results for LD-CC. Same trend observed
on SD-V2, SD-XL, DeepFloyd.
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